skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ochsner, Tyson"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    One of the benefits of training a process-based, land surface model is the capacity to use it in ungauged sites as a complement to standard weather stations for predicting energy fluxes, evapotranspiration, and surface and root-zone soil temperature and moisture. In this study, dynamic (i.e., time-evolving) vegetation parameters were derived from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and coupled with a physics-based land surface model (tin-based Real-time Integrated Basin Simulator (tRIBS)) at four eddy covariance (EC) sites in south-central U.S. to test the predictability of micro-meteorological, soil-related, and energy flux-related variables. One cropland and one grassland EC site in northern Oklahoma, USA, were used to tune the model with respect to energy fluxes, soil temperature, and moisture. Calibrated model parameters, mostly related to the soil, were then transferred to two other EC sites in Oklahoma with similar soil and vegetation types. New dynamic vegetation parameter time series were updated according to MODIS imagery at each site. Overall, the tRIBS model captured both seasonal and diurnal cycles of the energy partitioning and soil temperatures across all four stations, as indicated by the model assessment metrics, although large uncertainties appeared in the prediction of ground heat flux, surface, and root-zone soil moisture at some stations. The transferability of previously calibrated model parameters and the use of MODIS to derive dynamic vegetation parameters enabled rapid yet reasonable predictions. The model was proven to be a convenient complement to standard weather stations particularly for sites where eddy covariance or similar equipment is not available. 
    more » « less
  2. Abstract The vadose zone—the variably saturated, near‐surface environment that is critical for ecosystem services such as food and water provisioning, climate regulation, and infrastructure support—faces increasing pressures from both anthropogenic and natural factors, including changing climatic conditions. A more comprehensive understanding of vadose zone processes and interactions is imperative to effectively address these challenges and safeguard water and soil resources. This review outlines selected key issues, knowledge gaps, and research opportunities across six thematic sections. Each section presents a problem statement, a summary of recent innovations, and a compilation of emerging challenges and study opportunities. The selected topics include scaling and modeling of vadose zone properties and processes, soil moisture monitoring initiatives, surface energy balance, interplay between preferential water flow paths and biogeochemical processes, interactions between fires and vadose zone dynamics, and emerging contaminants and their fate in the vadose zone. This overview is intended to serve as a compendium of vadose zone science that encompasses both insights gained from prior research and anticipated needs for the coming years. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026